• Skip to main content
  • Skip to footer

Oklahoma Medical Research Foundation | OMRF

  • About
    • General Information
    • Disease Research
    • Training & Outreach
    • Events
    • Careers
    • Contact Us
  • Science
    • Scientist Directory
    • Research Programs
    • Research Centers
    • Core Facilities
    • Scientific Publications
    • Scientific Seminars
    • Technology Ventures
  • News
    • Media Resources
    • News Releases
    • Publications
    • On Your Health
    • Bodywork
  • Patients
    • Anti Aging Study
    • Lupus (SLE)
    • MBTPS1 Related Disorders
    • Multiple Sclerosis
    • Rheumatoid Arthritis
    • Sarcoidosis
    • Sjögren’s Disease
    • Osteoarthritis
    • Other Autoimmune Disorders
  • Donate
    • Donate Now
    • Ways to Give
    • Tax Credit
    • Planned Giving
    • Contact Philanthropy
  • My 101
  • Research
  • Brief CV
  • Publications
  • Contact
  • Lab Staff
  • News
Home - Science - Scientist Directory - Nath, Swapan K.

Swapan K. Nath, Ph.D.

Professor
Arthritis & Clinical Immunology Research Program

William H. & Rita Bell Chair in Biomedical Research

Adjunct Professor, Department of Pediatrics and Department of Pathology, University of Oklahoma Health Sciences Center

My 101

Almost every common and complex disease has a genetic basis. In other words, complex diseases are defined as diseases that are ultimately determined by a number of genetic and environmental factors. Therefore, identification of the genes is a prerequisite to understanding the biological basis of the disease. In my lab, we primarily focus on identifying and studying genes associated with lupus—an autoimmune disease in which the body’s immune system attacks the body’s own cells.

Lupus is a complex disease, so there are many combinations of genes and environmental factors that can cause it. In our genome, we have about 25,000 genes. By finding out what genes contribute to the disease, we can better understand how lupus starts. One way we do that is called “gene-mapping.” We take DNA samples from a large group of patients with lupus and compare them to DNA samples of people without lupus. Then we try to pinpoint DNA variations that show us which genetic difference are related to the disease. The statistical analyses are vital and necessary components of any gene-mapping effort.

A few years ago, this kind of work would have been impossible, because the technology to study the DNA variations efficiently did not exist. In each individual, we have to work with millions of data-points to draw a meaningful conclusion. It is still not easy, but now we have several analytical methods and computational techniques, along with faster and sophisticated machines, to help us do it.

The goal of all of this is to find the genes responsible for causing diseases and learn what they do. Then we can work on new ways to treat disease.

Research

For disorders with a poorly understood biochemical basis, identification of the genes is a prerequisite to understanding the biological basis of the disease. Therefore, identification of genes contributing to disease susceptibility helps us understanding the development and pathogenesis of these diseases.

Statistical analyses are vital and necessary components of any gene-mapping effort. Approaches to map and identify disease genes vary according to the research question, the population, and the disease under analysis. These methods include various genetic-epidemiological methods like linkage analysis, segregation analysis, candidate gene analysis, association mapping, admixture mapping, population genetics and meta-analysis.

The central focus of my research is to study the genetic epidemiology of complex diseases in which the inheritance does not follow clear-cut Mendelian fashion. These studies involve analyses of large numbers of phenotypically well-characterized families and case-control samples. The advent of new molecular genetic technologies makes the mapping and identification of susceptibility genes, and their interactions with other genes and environmental factors feasible. The disease in which we are mostly interested is systemic lupus erythematosus (SLE), an autoimmune disease and non-syndromic cleft lip with or without cleft palate (NSCLP).

We have conducted several genome scans for to identify chromosomal regions likely to harbor SLE susceptibility genes. Additionally, we are looking at candidate genes in the linked and other chromosomal regions for association with the disease. Currently, my lab is actively involved in the positional cloning and identification of major SLE susceptibility genes at 2q22-24, 5p15, 12q24, 16p12-q13 and Xq28 by combining data from linkage and allelic association from studies that differ in population, phenotype definition and ascertainment. We are also performing mapping by admixture linkage disequilibrium (MALD), a powerful and cost effective method to map the genes with low-penetrant risk. The key advantage of MALD is that a small number of ancestry informative markers are sufficient to map these SLE susceptibility loci. At present, we are applying MALD techniques to the study of African-American populations.

NSCLP is one of the most common craniofacial malformations. Both genetic and environmental factors are involved in the pathogenesis. Recently, based on a high-density genome scan, we have identified 13q33.1-p34 as a novel NSCLP susceptibility region. Fine mapping is underway to identify the actual susceptibility gene.

Brief CV

Education
M.Sc., University of Calcutta, India, 1989
Ph.D., Indian Statistical Institute, Calcutta, India, 1995
Postdoc, Case Western Reserve University, Cleveland, OH, 1995-2000

Honors and Awards
Recipient of National Eligibility Test Lectureship, conducted by University Grant Commission, India, 1990
Recipient of Indian Statistical Institute Fellowship, 1990
Recipient of the Young Scientist Award in Population Genetics, Indian Society of Human Genetics, 1993
Recipient of Travel Grant Award, Federation of Clinical Immunology Societies, 2002
The Merrick Award for Outstanding Research, 2006
J. Donald and Patricia H. Capra Distinguished Scientist, 2008
Recipient of Travel Grant Award, Federation of Clinical Immunology Society, 2013, 2014
Edward L. and Thelma Gaylord Prize for Scientific Excellence, 2016
William H. and Rita Bell Chair in Biomedical Research, 2018
Recipient of Travel Grant Award, Federation of Clinical Immunology Society, 2019
Director, Oklahoma Federation of Clinical Immunology Society (FOCiS) Center of Excellence, June 2024 - Present

Other Activities
Ad hoc reviewer for Scientific Journals (in alphabetical order):  American Journal of Human Genetics, Arthritis & Rheumatology, Arthritis Research & Therapy, Autoimmune Diseases, Bioinformatics, Central European Journal of Immunology, G3:Genes,Genomics,Genetics, Genetic Epidemiology, Human Genetics, Human Immunology, Human Molecular Genetics, International Journal of Immunogenetics, International Journal of Rheumatology, Journal of Autoimmunity, Journal of Investigative Dermatology, Journal of Rheumatology, Lupus Science & Medicine, Nature Genetics, Pediatric Nephrology, PLOS Genetics, PLOS One, Rheumatology, Scientific Reports, Tissue Antigen, Translational Research

Memberships
American Society of Human Genetics
International Genetic Epidemiology Society
Federation of Clinical Immunology Society
The American Association of Immunologists
American College of Rheumatology
New York Academy of Sciences

Joined OMRF scientific staff in 2000

Publications

View more publications

Recent Publications

Radhakrishna U, Kuracha MR, Hamzavi I, Saiyed N, Prajapati J, Rawal RM, Uppala LV, Damiani G, Ratnamala U, Nath SK. Impaired Molecular Mechanisms Contributing to Chronic Pain in Patients with Hidradenitis Suppurativa: Exploring Potential Biomarkers and Therapeutic Targets. Int J Mol Sci 26, 2025 January, PMID: 39940809, PMCID: PMC11817842

Rallabandi HR, Singh MK, Looger LL, Nath SK. Defining Mechanistic Links Between the Non-Coding Variant rs17673553 in CLEC16A and Lupus Susceptibility. Int J Mol Sci 26, 2025 January, PMID: 39796169, PMCID: PMC11720054

Kurien BT, Fesmire J, Nath SK, Scofield RH. Increased carotid intima-media thickening and antioxidized low-density lipoprotein in an anti-Ro60 SLE autoantibody subset. Front Lupus 1, 2023 January, PMID: 39055110, PMCID: PMC11270588

Selected Publications

Molineros JE, Singh B, Terao C, Okada Y, Kaplan J, McDaniel B, Akizuki S, Sun C, Webb CF, Looger LL Nath SK. Mechanistic Characterization of RASGRP1 Variants Identifies an hnRNP-K-Regulated Transcriptional Enhancer Contributing to SLE Susceptibility. Front Immunol. 2019 May 20;10:1066. doi: 10.3389/fimmu.2019.01066. eCollection 2019. PMID: 31164884, PMCID: PMC6536009

Molineros JE, Looger LL, Kim K, Okada Y, Terao C, Sun C, Zhou XJ, Raj P, Kochi Y, Suzuki A, Akizuki S, Nakabo S,  Bang SY, Lee HS, Kang YM, Suh CH< Chung WT, Park YB, Choe JY, Shim SC, Lee SS, Zuo X, Yamamoto K, Li QZ, Shen N, Porter LL, Harley JB, Chua KH, Zhang H, Wakeland EK, Tsao BP, Bae SC, Nath SK. Amino Acid Signatures of HLA Class-I and II Molecules are Strongly Associated with SLE Susceptibility and Autoantibody Production in Eastern Asians. PLoS Genet. 2019 Apr 25;15(4):e1008092. doi: 10.1371/journal.pgen.1008092. eCollection 2019 Apr. PMID: 31022184, PMCID: PMC6504188

Molineros JE, Yang W, Zhou XJ, Sun C, Okada Y, Zhang H, Heng-Chua K, Lau YL, Kochi Y, Suzuki A, Yamamoto K, Ma J, Bang SY, Lee HS, Kim K, Bae SC, Zhang H, Shen N, Looger LL, Nath SK. Confirmation of five novel susceptibility loci for systemic lupus erythematosus (SLE) and integrated network analysis of 82 SLE susceptibility loci. Hum Mol Genet. 2017 Mar 15;26(6):1205-16. PMID: 28108556 PMCID: PMC5731438

Sun C, Molineros JE, Looger LL, Zhou XJ, Kim K, Okada Y, Ma J, Qi YY, Kim-Howard X, Motghare P, Bhattarai K, Adler A, Bang SY, Lee HS, Kim TH, Kang YM, Suh CH, Chung WT, Park YB, Choe JY, Shim SC, Kochi Y, Suzuki A, Kubo M, Sumida T, Yamamoto K, Lee SS, Kim YJ, Han BG, Dozmorov M, Kaufman KM, Wren JD, Harley JB, Shen N, Chua KH, Zhang H, Bae SC, Nath SK. High-density genotyping of immune-related loci identifies new SLE risk variants in individuals with Asian ancestry. DOI: 10.1038/ng.3496. Nat Genet. 2016 Mar;48(3):323-30. Epub 2016 Jan 25. PMID: 26808113 PMCID: PMC4767573

Kim-Howard X, Sun C, Molineros JE, Maiti AK, Chandru H, Adler A, Wiley GB, Kaufman KM, Kottyan L, Guthridge JM, Rasmussen A, Kelly J, Sanchez E, Raj P, Li QZ, Bang SY, Lee HS, Kim TH, Kang YM, Suh CH, Chung WT, Park YB, Choe JY, Shim SC, Lee SS, Han BG, Olsen NJ, Karp DR, Moser K, Pons-Estel BA, Wakeland EK, James JA, Harley JB, Bae SC, Gaffney PM, Alarcón-Riquelme M, on behalf of GENLES, Looger LL, Nath SK. Allelic heterogeneity in NCF2 associated with systemic lupus erythematosus (SLE) susceptibility across four ethnic populations. Hum Mol Genet. 2014 Mar 15;23(6):1656-68. PMID: 24163247 PMCID: PMC3929085

Molineros JE, Maiti AK, Sun C, Looger LL, Kim-Howard X , Glenn S, Adler A, Han S, Kelly JA, Niewold TB, Gilkeson GS, Brown EE, Alarcón GS, Edberg JC, Petri M, Ramsey-Goldman R, Reveille JD, Vilá LM, Freedman BI, Tsao BP, Criswell LA, Jacob CO, Moore JH, Vyse TJ, Langefeld CL, Guthridge JM, Gaffney PM, Moser KL, Scofield RH, Alarcón-Riquelme ME, on behalf of the BIOLUPUS Network, Williams SM, Merrill JT, James JA, Kaufman KM, Kimberly RP, Harley JB, Nath SK. Admixture Mapping in Lupus Identifies Multiple Functional Variants within IFIH1 Associated with Apoptosis, Inflammation and Autoantibody Production. PLoS Genet. 2013;9(2):e1003222. PMID: 23441136 PMCID: PMC3575474

Contact

Arthritis & Clinical Immunology Research Program, MS 71
Oklahoma Medical Research Foundation
825 N.E. 13th Street
Oklahoma City, OK 73104

Phone: (405) 271-7765
Fax: (405) 271-4110
E-mail: Swapan-Nath@omrf.org

For media inquiries, please contact OMRF’s Office of Public Affairs at news@omrf.org.

Lab Staff

Lily Wong, Ph.D.
Staff Scientist

Manish Kumar Singh, Ph.D.
Assistant Staff Scientist

Muhammad Adeel, Ph.D.
Assistant Staff Scientist

Celi Sun
Senior Data Analyst

Louise Williamson
Finance and Administrative Specialist

News from the Nath lab

Dr. Nath in the Media

News from the Nath lab

OMRF scientist links genetic variant to lupus
December 26, 2024

Variant appears to predispose Asian people to the disease

OMRF receives grant to study genetic links to lupus
December 21, 2023

About 1.5 million Americans – primarily women – have the autoimmune disease

OMRF receives $480,000 to study genetic drivers of lupus
June 24, 2022

Research will target specific regions of DNA strands to understand role of genetic variants

OMRF awarded two new grants to study lupus genes
October 18, 2018

Two grants will enable OMRF scientists to examine genes thought to play a role in lupus.

OMRF honors Everest, five scientists
April 13, 2018

At its annual honors and awards ceremony on Thursday, OMRF presented Christy Everest with its Board of Directors Distinguished Service Award.

International study reveals 24 new genes associated with lupus
July 19, 2017

These findings will help scientists understand how to better diagnose and treat the disease.

OMRF adds board member, honors scientists at spring meeting
April 14, 2016

OMRF hosted its annual spring board meeting on Wednesday.

Oklahoma researchers find clues to the origins of lupus
March 24, 2016

These new findings could play a key role in tailoring individual lupus treatments.

Researchers discover 10 new lupus genes in Asian population study
January 25, 2016

The findings were published in the Jan. 25 issue of Nature Genetics.

Three new grants bring $5.1 million to OMRF and Oklahoma
October 7, 2014

New funding streams will launch studies in cancer, influenza and lupus.

Research team discovers lupus gene’s role
April 23, 2014

BLK controls autoantibody creation in the immune system.

Genetics show possible explanation for lupus disparity
March 14, 2013

Findings may show why lupus risk is higher in African Americans

OMRF begins studies of celiac disease
January 31, 2012

Scientists search for links between celiac and other autoimmune diseases

OMRF wins $10 million grant to study lupus
August 13, 2009

OMRF has received a $10 million grant from the National Institutes of Health to study the autoimmune disease lupus. The five-year award comes from the National Institute of Allergy and Infectious Diseases at the NIH. The grant will support research on the genetic origins of lupus, which affects up to an estimated 2 million Americans […]

New lupus treatment shows promise
July 27, 2009

Researcher calls new drug “greatest thing in 50 years”

It’s in the genes: OMRF leads international effort that unmasks potential genetic roots of lupus
January 21, 2008

An international consortium of scientists led by OMRF investigator John B. Harley, M.D., Ph.D., has identified multiple genes linked to lupus, a devastating autoimmune disease that affects as many as 2 million Americans and 15 million people worldwide. The group’s findings appear online in two related articles in the Feb. edition of the journal Nature […]

OMRF adds board members, honors scientists
November 2, 2006

At its semiannual board meeting Thursday, the Oklahoma Medical Research Foundation added two new members to its board of directors: Tulsa Mayor Kathryn Taylor and James Morris II, a retired Oklahoma City insurance executive. The board also honored OMRF researchers Swapan Nath, Ph.D., and Fletcher Taylor Jr., M.D. An attorney, Kathryn Taylor began her legal […]

Dr. Nath in the Media

Oklahoma business briefs: OMRF researchers win grants to study lupus
NewsOk.com

OMRF awarded grants to study lupus genes
JournalRecord.com

OMRF presents awards
Newsok.com

Before Footer

Equal Opportunity Employer

Footer

  • Jobs
  • Directory
  • Donor Privacy Statement
  • Ethics Point
  • Intranet
Facebook Twitter Instagram Linkedin

Subscribe to OMRF News
  • Contact
  • Careers
  • Donor Privacy
  • Ethics Point
  • Intranet
OMRF Logo
OKLAHOMA MEDICAL RESEARCH FOUNDATION
825 NE 13th St.
Oklahoma City, OK 73104
(405) 271-6673
Charity navigatorUnited WayTop Workplace