• Skip to main content
  • Skip to footer

Oklahoma Medical Research Foundation | OMRF

OMRF is an independent, nonprofit biomedical research institute dedicated to discoveries that make a difference.

  • About
    • General Information
    • Disease Research
    • Education & Outreach
    • Events
    • Jobs
    • Contact Us
  • Science
    • Scientist Directory
    • Research Programs
    • Research Centers
    • Core Facilities
    • Scientific Publications
    • Scientific Seminars
    • Technology Ventures
  • News
    • Media Resources
    • OMRF in the Media
    • OMRF News
    • OMRF Publications
    • OMRF Videos
    • Dr. Prescott’s Columns
  • Patients
    • Lupus (SLE)
    • MBTPS1 Related Disorders
    • Multiple Sclerosis
    • Rheumatoid Arthritis
    • Sarcoidosis
    • Sjögren’s Syndrome
    • Other Autoimmune Disorders
  • Donate
    • Donate Now
    • Tax Credit
    • Planned Giving
    • Vehicle Donations
    • Why We Give
    • Your Gift at Work
    • Donor Recognition
    • Contact
  • Research
  • Education
  • Publications
  • Contact
Home - Science - Scientist Directory - Ahn, Bumsoo

Bumsoo Ahn, Ph.D.

Research Assistant Member
Aging & Metabolism Research Program

Research

Skeletal muscle weakness is a hallmark of several physiological and pathological conditions, including age-associated loss of muscle mass and function (i.e. sarcopenia). Regardless of the universal impact and significance of sarcopenia in healthy lifespan, our understanding on the underlying causes of sarcopenia is still unclear. This is due to several alterations that occur with aging, including hormones, appetite, neurodegeneration, metabolism, and etc. I perform experiments to understand the mechanisms responsible for sarcopenia and eventually develop treatments that can mitigate symptoms of sarcopenia.

Oxidative stress is an imbalance between pro-oxidant and antioxidant function, which lead to cellular and tissue dysfunction in muscle. To this end, I use genetically engineered mouse models of oxidative modifications by upregulating and downregulating individual antioxidant genes in a target organ only (i.e. muscle). I study intrinsic alterations of contractile properties of skeletal muscle that are impaired with aging. This includes calcium sensitivity, calcium release and reuptake, which are critical during muscle contractile activities. I also study mitochondrial functions because mitochondria are the primary source of free radicals, calcium handling and ATP production.

My research also focuses on the role of ghrelin in sarcopenia, a hormone with decreased circulating level in the elderly. If ghrelin offers protection in animals, it would be an excellent candidate for clinical trials as it has an excellent safety profile in rodents and humans.

Education

Education
B.S., Physical Education, Yonsei University, South Korea, 2004
M.A., Exercise Physiology, University of North Carolina, Chapel Hill, 2011
Ph.D., Exercise Physiology, Basic and Clinical Muscle Biology Laboratory, University of Florida, 2015

Joined OMRF Scientific Staff in 2019

Publications

Recent Publications

Qaisar R, Pharaoh G, Bhaskaran S, Xu H, Ranjit R, Bian J, Ahn B, Georgescu C, Wren JD, Van Remmen H. Restoration of Sarcoplasmic Reticulum Ca2 ATPase (SERCA) Activity Prevents Age-Related Muscle Atrophy and Weakness in Mice. Int J Mol Sci 22, 2020 December, PMID: 33375170, PMCID: PMC7792969

Hall SE, Ahn B, Smuder AJ, Morton AB, Hinkley JM, Wiggs MP, Sollanek KJ, Hyatt H, Powers SK. Comparative Efficacy of Angiotensin II Type 1 Receptor Blockers Against Ventilator-Induced Diaphragm Dysfunction in Rats. Clin Transl Sci, 2020 November, PMID: 33222389

Brown JL, Lawrence MM, Ahn B, Kneis P, Piekarz KM, Qaisar R, Ranjit R, Bian J, Pharaoh G, Brown C, Peelor FF 3rd, Kinter MT, Miller BF, Richardson A, Van Remmen H. Cancer cachexia in a mouse model of oxidative stress. J Cachexia Sarcopenia Muscle, 2020 September, PMID: 32918528, PMCID: PMC7749559

Selected Publications
Ahn B, Ranjit R, Premkumar P, Pharaoh G, Piekarz KM, Matsuzaki S, Claflin DR, Riddle K, Judge J, Bhaskaran S, Satara Natarajan K, Barboza E, Wronowski B, Kinter M, Humphries KM, Griffin TM, Freeman WM, Richardson A, Brooks SV, Van Remmen H. Mitochondrial oxidative stress impairs contractile function but paradoxically increases muscle mass via fibre branching. J Cachexia Sarcopenia Muscle 10:411-428, 2019 April, PMID: 30706998, PMCID: PMC6463475

Ahn B*, Pharaoh G*, Premkumar P, Huseman K, Ranjit R, Kinter M, Szweda L, Fulop G, Tarantini S, Csiszar A, Ungvari Z, Van Remmen H. Nrf2 deficiency exacerbates age-related contractile dysfunction and loss of skeletal muscle mass. Redox Biol. 17 (2018) 47-58. PMID: 29673700 PMCID: PMC6006677 *equal contribution

Ahn B, Coblentz PD, Beharry AW, Patel N, Judge AR, Moylan JS, Hoopes CW, Bonnell MR, Ferreira LF. Diaphragm abnormalities in patients with end-stage heart failure: NADPH oxidase upregulation and protein oxidation. Front Physiol. 2017 Jan 9. PMID: 28119629 PMCID: PMC5220111

Ahn BS, Beharry AW, Frye GS, Judge AR, Ferreira LF. NAD(P)H oxidase subunit p47phox is elevated and p47phox knockout prevents diaphragm contractile dysfunction in heart failure. Am J Physiol Lung Cell Mol Physiol. 2015 Jul 24:ajplung.00176.2015. PMID: 26209274 PMCID: PMC4556931

Ahn B, Beaver T, Martin T, Hess P, Brumback BA, Ahmed S, Smith BK, Leeuwenburgh C, Martin AD, Ferreira LF. Phrenic nerve stimulation increases human diaphragm fiber force after cardiothoracic surgery. Am. J. Respir. Crit. Care Med. 2014:190:837-839.

Ahn B, Empinado HM, Ferreira LF. Cachexia and diaphragm contractile dysfunction in a murine model of pulmonary hypertension. PLoS One. 2013;22;8(4):e62702. PMID: 23614054  PMCID: PMC3632558

Contact

Aging & Metabolism Research Program, MS 21
Oklahoma Medical Research Foundation
825 N.E. 13th Street
Oklahoma City, OK 73104

Phone: (405) 271-2653
Fax: (405) 271-1437
E-mail: Bumsoo-ahn@omrf.org

Before Footer

EEO/AA Employer/Vet/Disabled

Footer

  • Jobs
  • Directory
  • Donor Privacy Statement
  • Intranet
Charity navigator
United Way Give Smart OKC
Facebook Twitter YouTube Instagram Mail Linkedin
Administrator Log In